
Phased Array System Toolbox™
Getting Started Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Phased Array System Toolbox™ Getting Started Guide
© COPYRIGHT 2011–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
April 2011 Online only New for Version 1.0 (R2011a)
September 2011 Online only Revised for Version 1.1 (R2011b)
March 2012 Online only Revised for Version 1.2 (R2012a)
September 2012 Online only Revised for Version 1.3 (R2012b)
March 2013 Online only Revised for Version 2.0 (R2013a)
September 2013 Online only Revised for Version 2.1 (R2013b)
March 2014 Online only Revised for Version 2.2 (R2014a)
October 2014 Online only Revised for Version 2.3 (R2014b)
March 2015 Online only Revised for Version 3.0 (R2015a)
September 2015 Online only Revised for Version 3.1 (R2015b)
March 2016 Online only Revised for Version 3.2 (R2016a)
September 2016 Online only Revised for Version 3.3 (R2016b)
March 2017 Online only Revised for Version 3.4 (R2017a)
September 2017 Online only Revised for Version 3.5 (R2017b)
March 2018 Online only Revised for Version 3.6 (R2018a)
September 2018 Online only Revised for Version 4.0 (R2018b)
March 2019 Online only Revised for Version 4.1 (R2019a)

Getting Started with Phased Array System Toolbox
Software

1
Phased Array System Toolbox Product Description 1-2

Key Features . 1-2

Limitations . 1-4
MATLAB Compiler Support . 1-4
Code Generation Support . 1-4

Standards and Conventions . 1-5
Scope of Standards and Conventions 1-5
Complex-Valued Baseband Signals . 1-5
Data Organization of Baseband Signals 1-6
Spatial Coordinates . 1-6
Physical Quantities . 1-6
Supported Data Types . 1-6

Phased Array Systems
2

System Overviews . 2-2
Phased Array System Overview . 2-2
Phased Array Radar Overview . 2-4

v

Contents

Radar Data Cube, Units, and Physical Constants
3

Radar Data Cube . 3-2
Radar Data Cube Concept . 3-2
Fast Time Samples . 3-3
Slow Time Samples . 3-4
Spatial Sampling . 3-4
Space-Time Processing . 3-5
Organizing Data in the Radar Data Cube 3-5

Units of Measure and Physical Constants 3-7
Units of Measure . 3-7
Physical Constants . 3-7

Basic Radar Workflow
4

Overview of Basic Workflow . 4-2

End-to-End Radar System . 4-3

vi Contents

Getting Started with Phased Array
System Toolbox Software

• “Phased Array System Toolbox Product Description” on page 1-2
• “Limitations” on page 1-4
• “Standards and Conventions” on page 1-5

1

Phased Array System Toolbox Product Description
Design and simulate phased array signal processing systems

Phased Array System Toolbox provides algorithms and apps for the design, simulation,
and analysis of sensor array systems in radar, wireless communication, EW, sonar, and
medical imaging applications. You can design phased array systems and analyze their
performance under different scenarios using synthetic or acquired data. Toolbox apps let
you explore the characteristics of sensor arrays and waveforms and perform link budget
analysis. In-product examples provide a starting point for implementing a full range of
phased array multifunction systems that require frequency, PRF, waveform, and beam
pattern agility.

For radar, sonar, and EW system design, the toolbox lets you model dynamics and targets
for ground-based, airborne, ship-borne, submarine, and automotive systems. It includes
pulsed and continuous waveforms and signal processing algorithms for beamforming,
matched filtering, direction of arrival (DOA) estimation, and target detection. The toolbox
also includes models for transmitters and receivers, propagation channels, targets,
jammers, and clutter.

For 5G, LTE, and WLAN wireless communications system design, the toolbox enables you
to incorporate antenna arrays and beamforming algorithms into system-level simulation
models. It includes capabilities for designing and analyzing array geometries and
subarray configurations, and provides array processing algorithms for conventional and
hybrid beamforming, DOA estimation, and spatial multiplexing.

Key Features
• Multifunction radar modeling for active electronically scanned array (AESA) and

passive electronically scanned array (PESA) systems
• Scenario generation with moving targets, propagation channels with atmospheric loss,

and interference such as clutter and jammers
• Standard and conformal sensor arrays and subarrays with perturbation and

polarization effects
• Continuous and pulsed waveform libraries, providing frequency and PRF agility
• Digital beamforming, direction of arrival (DOA), and space-time adaptive processing

(STAP) algorithms
• Range and Doppler estimation and detection algorithms

1 Getting Started with Phased Array System Toolbox Software

1-2

• Data synthesis for training machine learning algorithms

 Phased Array System Toolbox Product Description

1-3

Limitations
In this section...
“MATLAB Compiler Support” on page 1-4
“Code Generation Support” on page 1-4

MATLAB Compiler Support
Phased Array System Toolbox supports the MATLAB® Compiler™ for all functions and
System objects. Compiler support does not extend to any of the toolbox apps.

Code Generation Support
While the Phased Array System Toolbox software supports automatic generation of C code
using MATLAB Coder™, there are several limitations. See “Code Generation” for more
information about limitations on the use of MATLAB Coder with the Phased Array System
Toolbox.

1 Getting Started with Phased Array System Toolbox Software

1-4

Standards and Conventions
In this section...
“Scope of Standards and Conventions” on page 1-5
“Complex-Valued Baseband Signals” on page 1-5
“Data Organization of Baseband Signals” on page 1-6
“Spatial Coordinates” on page 1-6
“Physical Quantities” on page 1-6
“Supported Data Types” on page 1-6

Scope of Standards and Conventions
Phased Array System Toolbox software uses consistent conventions with respect to units
of measure, data representations, and coordinate systems. You must understand these
conventions to use the toolbox.

Complex-Valued Baseband Signals
In phased array signal processing, it is common to shift the frequency content of a
waveform to support effective radiation and propagation in the medium. You accomplish
this task by modulating a baseband signal with nonzero spectral magnitudes in the
vicinity of zero frequency to create a bandpass signal with nonzero spectral magnitudes
centered around a carrier frequency. Typically, the bandwidth of the baseband signal is
small compared to the carrier frequency resulting in a narrowband signal. To process
returned signals, the receiver demodulates the bandpass signal to the baseband. The
demodulation involves local oscillators both in phase and 90 degrees out of phase with
the modulating carrier frequency. This demodulation results in in-phase I and quadrature
Q baseband signals, or channels. For processing, it is convenient to create a complex-
valued baseband signal by assigning the I channel to be the real part and the Q channel
to be the imaginary part, I+jQ.

This software uses the complex-valued baseband representation to represent both
transmitted and received signals. Actual phased array systems transmit real-valued
signals and create complex-valued baseband signals only at the receiver. However, you
can use a complex-valued representation at all stages. Doing so enables you to accurately
model the effect of system gains, losses, and interference on the received signal samples.

 Standards and Conventions

1-5

Data Organization of Baseband Signals
You can use this software to efficiently implement space-time processing of complex-
valued baseband samples by organizing the data in a three-dimensional matrix. See
“Radar Data Cube” on page 3-2 for an explanation of how the software organizes
space-time data.

Spatial Coordinates
Representation of position in three dimensions is a fundamental aspect of array signal
processing. This software specifies rectangular and spherical coordinates as column
vectors with respect to both global and local origins. For a detailed explanation of the
conventions, see:

• “Rectangular Coordinates”
• “Spherical Coordinates”
• “Global and Local Coordinate Systems”

Physical Quantities
This software uses the International System of Units (SI) almost exclusively for
measurement. In addition, there are physical constants declared and used in calculations.
See “Units of Measure and Physical Constants” on page 3-7 for a detailed explanation
of the conventions.

Supported Data Types
This software supports only double-precision data types.

1 Getting Started with Phased Array System Toolbox Software

1-6

Phased Array Systems

2

System Overviews
In this section...
“Phased Array System Overview” on page 2-2
“Phased Array Radar Overview” on page 2-4

Phased Array System Overview
Phased array systems use the spatial and temporal characteristics of propagating space-
time wavefields to extract information about any sources of the wavefields. By processing
data collected over a spatiotemporal aperture using an array of sensors, you can
significantly improve performance over a single sensor in a number of areas. These areas
include, but are not limited to:

• Signal detectability
• Spatial selectivity
• Source identification and localization

The following figure shows a high-level overview of a phased array system.

Source

Array

Receiver

Array

Target

Environment

Environment

Waveform

Result

Phased array systems in diverse applications, such as radar, sonar, medical
ultrasonography, medical imaging, and cellular phone communication share many
common elements including:

• Source Array — The source array transmits a waveform through an environment. The
waveform often consists of repeating pulses modulated by a carrier frequency.
Depending on the application, the wave may be an acoustic (mechanical), or

2 Phased Array Systems

2-2

electromagnetic wave. The source array is often electronically or mechanically steered
to transmit in preferred directions.

• Environment — The medium in which the waveform travels to and from the target
affects a number of system parameters including propagation speed, absorption loss,
and wave dispersion.

• Target — The target reflects a portion of the incident waveform energy from the
source array. Some percentage of the reflected energy is backscattered in the
direction of the receiver array. In some applications, the target is the source of the
waveform energy.

• Receiver Array — The receiver array collects energy from the target representing the
signal along with external and internal sources of noise. The receiver implements
algorithms to improve the signal-to-noise ratio and extract space-time information
from the signal.

At the receiver, phased array systems implement algorithms to extract temporal and
spatial information about the source, or sources of energy. The following figure shows a
high-level overview of array signal processing algorithms common to a significant number
of phased array systems.

Receiver
Array

Temporal

Processing

Spatial

Processing

Space-Time

Processing

Brief descriptions of the three categories are:

• Temporal Processing — Phased arrays often operate in poor signal-to-noise (SNR)
ratios. Employing temporal integration and matched filtering improves the SNR.
Knowing the propagation speed of the transmitted waveform and measuring the time
it takes for a pulse to travel to and from a target allows phased array systems to
estimate range. Performing Fourier analysis on a time series of pulses enables the
phased array to extract Doppler information from moving targets.

• Spatial Processing — Combining weighted information across multiple sensor
elements with a known geometry enables phased array systems to spatially filter

 System Overviews

2-3

incoming waveforms. Phased arrays can also estimate the direction of arrival and the
number of source waveforms incident on the array.

• Space-Time Processing — Simultaneously analyzing both spatial and temporal
information enables phased array systems to produce joint angle-Doppler
measurements of incident waveforms. Space-time processing enables phased array
systems to distinguish moving targets from stationary targets when the phased array
is in motion.

Phased Array Radar Overview
The following figure presents an overview of a radar phased array system. The figure
expands on the high-level overview shown in “Phased Array System Overview” on page 2-
2.

transmit radiate

propagate

transmitter

collect

propagate
waveform

radiator

using

phased array

environment

target

environment

environment

receiver
radar

data cube

collector

using

phased array

jammer

re!ect

propagate

receive

clutter

To exploit the advantages of array processing, you must first understand how to model
and optimize the performance of each component and operation in a phased array system.
This software provides models for all the components of the phased array system
illustrated in the preceding figure from signal synthesis to signal analysis.

The software supports models in which the transmitter and receiver are collocated or
spatially separated. The software also supports models in which both the targets and
phased array are in motion.

2 Phased Array Systems

2-4

Waveform Synthesis

Phased Array System Toolbox software supports the design of rectangular, linear
frequency-modulated, and linear stepped-frequency pulsed waveforms. To create such
waveforms, you use phased.RectangularWaveform, phased.LinearFMWaveform,
and phased.SteppedFMWaveform.

Physical Components and Environment Modeling

The software enables you to simulate the physical components of a phased array system,
including:

• Transmitter — You can specify the transmitter peak power, gain, and loss factor. See
phased.Transmitter for details.

• Antenna elements — You can create antenna elements with isotropic response
patterns or antenna elements with user-specified response patterns. These response
patterns can encompass the entire range of azimuth ([-180,180] degrees) and
elevation ([-90,90] degrees) angles. See phased.IsotropicAntennaElement,
phased.CosineAntennaElement, and phased.CustomAntennaElement for
details.

• Microphone elements — For acoustic applications, you can model an
omnidirectional or custom microphone with
phased.OmnidirectionalMicrophoneElement or
phased.CustomMicrophoneElement.

Phased arrays — There are System objects for three phased array geometries:

• Uniform linear array (ULA) — phased.ULA enables you to model a uniform linear
array consisting of sensor elements with isotropic or custom radiation patterns. You
can specify the number of elements and element spacing.

• Uniform rectangular array — phased.URA enables you to model a uniform
rectangular array of sensor elements with isotropic or custom radiation patterns.
You can specify the number of elements, element spacing along two orthogonal
axes, and lattice geometry.

• Conformal array — phased.ConformalArray enables you to model a conformal
array of sensor elements with isotropic or custom radiation patterns. To do so,
specify the antenna element positions and normal directions.

• Radiator — You can model waveform radiation through an antenna element,
microphone, or array with the phased.Radiator object.

 System Overviews

2-5

• Environment — You can model the propagation of an electromagnetic (EM) wave in
free space with phased.FreeSpace. You can simulate one-way or two-way
propagation of a narrowband EM signal by applying range-dependent attenuation and
time delays, or phase shifts.

• Target — You can simulate a target with a specified radar cross section (RCS) using
phased.RadarTarget. phased.RadarTarget supports both nonfluctuating and
fluctuating (random) models of the RCS. The toolbox supports a family of random
models based on the chi-square distribution known as Swerling target models.

• Interference — You can simulate wideband interference with a user-specified
radiated power, using phased.BarrageJammer.

• Clutter — You can simulate surface clutter using phased.ConstantGammaClutter.
• Signal collection — You can simulate far-field or near-field narrowband and

wideband signal reception from specified directions using phased.Collector and
phased.WidebandCollector.

• Receiver — phased.ReceiverPreamp enables you to simulate the gain, loss factor,
and internal noise characteristics of your receiver.

Array Signal Processing

For the processing of received data, Phased Array System Toolbox software supports a
wide-range of array signal processing algorithms. The following figure presents a more
detailed view of the general concepts discussed in “Phased Array System Overview” on
page 2-2.

2 Phased Array Systems

2-6

Receiver

DOA

Beamforming

Matched
Filtering

Time-varying
Gain

STAP

Coherent
Integration

Noncoherent
Integration

NP
Detector

Range
Detection

Pulse
Doppler

The preceding figure only presents an overview of the array signal processing operations
supported by the software rather than predetermined orders of operation. For example,
direction of arrival (DOA) estimation, beamforming, and space-time adaptive processing
(STAP) often follow operations that improve the signal-to-noise ratio such as matched
filtering. You can implement the supported algorithms in the manner best-suited to your
application.

• Matched Filtering — You can perform matched filtering on your data with
phased.MatchedFilter. See “Matched Filtering” for examples.

 System Overviews

2-7

• Time-varying gain — You can equalize the power level of the incident waveform
across samples from different ranges using phased.TimeVaryingGain. This object
compensates for signal power loss due to range.

• Beamforming and direction-of-arrival (DOA) estimation — The Phased Array
System Toolbox provides a number of algorithms for beamforming and direction of
arrival estimation.

• Detection — A number of utility functions implement and evaluate Neyman-Pearson
detectors using both coherent and noncoherent pulse integration.

The toolbox also provides routines for evaluating detector performance through the
construction of receiver operating characteristic curves.

To model fluctuating noise characteristics, phased.CFARDetector object adaptively
estimates the noise characteristics from the data to maintain a constant false-alarm
rate.

• Pulse Doppler — The Phased Array System Toolbox has utility functions for
estimating Doppler shift based on speed (speed2dop) and to estimate speed based on
the Doppler shift (dop2speed. You can implement pulse-Doppler processing by using
the spectrum estimation algorithms in the Signal Processing Toolbox™ product on the
slow-time data. See “Radar Data Cube” on page 3-2 for an explanation of the slow-
time data.

See “Doppler Shift and Pulse-Doppler Processing” for examples of Doppler processing.

To calculate the joint angle-Doppler response of the input data, use
phased.AngleDopplerResponse.

Example workflows for computing the angle-Doppler response can be found in “Angle-
Doppler Response”.

• Space-time adaptive processing — You can implement displaced phase center
antenna techniques with phased.DPCACanceller and phased.ADPCACanceller.
phased.STAPSMIBeamformer implements an adaptive beamformer by calculating
the beamformer weights using the estimated space-time interference covariance
matrix.

2 Phased Array Systems

2-8

Radar Data Cube, Units, and
Physical Constants

• “Radar Data Cube” on page 3-2
• “Units of Measure and Physical Constants” on page 3-7

3

Radar Data Cube
In this section...
“Radar Data Cube Concept” on page 3-2
“Fast Time Samples” on page 3-3
“Slow Time Samples” on page 3-4
“Spatial Sampling” on page 3-4
“Space-Time Processing” on page 3-5
“Organizing Data in the Radar Data Cube” on page 3-5

Radar Data Cube Concept
The radar data cube is a convenient way to conceptually represent space-time processing.
To construct the radar data cube, assume that preprocessing converts the RF signals
received from multiple pulses across multiple array elements to complex-valued baseband
samples. Arrange the complex-valued baseband samples in a three-dimensional array of
size K-by-N-by-L.

• K defines the length of the first (fast-time) dimension.
• N defines the length of the second (spatial) dimension.
• L defines the length of the third (slow-time) dimension.

Many radar signal processing operations in Phased Array System Toolbox software
correspond to processing lower-dimensional subsets of the radar data cube. The subset
could be a one-dimensional subvector or a two-dimensional submatrix.

The following figure shows the organization of the radar data cube in this software.
Subsequent sections explain each of the dimensions and which aspect of space-time
processing they represent.

3 Radar Data Cube, Units, and Physical Constants

3-2

Fa
st

 T
im

e

Spatial Sampling

Slo
w

 T
im

e

Fast Time Samples
Consider an K-by-1 subvector of the radar data cube along the fast-time axis in the above
diagram. Each column vector represents a set of complex-valued baseband samples from
a single pulse at one array element sampled at the rateFs. This is the highest sampling
rate of the system and leads to the designation fast time. Fs should be chosen to avoid
aliasing. The corresponding sampling interval is given by Ts = 1/Fs. The fast time
dimension is also referred to as the range dimension and the fast time sample intervals,
when converted to distance using the signal propagation speed, are often referred to as
range bins, or range gates.

Pulse compression is an example of a signal processing operation performed on the fast
time samples. Another example of signal processing is dechirping. In these types of

 Radar Data Cube

3-3

operations, the number of samples in the first dimension of the output can differ from the
input.

Slow Time Samples
Consider each K-by-L submatrix of the radar data cube. In each submatrix there are K
row vectors with dimension 1-by-L. Each of these row vectors contains complex-valued
baseband samples from L different pulses corresponding to the same range bin. There is a
K-by-L matrix for each of the N array elements. The sampling interval between the L
samples is the pulse repetition interval (PRI). Typical PRIs are much longer than the fast-
time sampling interval. Because of the long sampling intervals, samples taken across
multiple pulses are referred to as slow time.

Processing data in the slow-time dimension allows you to estimate the Doppler spectrum
at a given range bin. In this type of operation, the number of samples in the third
dimension of the data cube can change. The number of Doppler bins may not be the same
as the number of pulses.

The Nyquist criterion applies equally to the slow-time dimension. The reciprocal of the
PRI is the pulse repetition frequency (PRF). The PRF gives the width of the unambiguous
Doppler spectrum.

Spatial Sampling
Phased arrays consist of multiple array elements. Consider each K-by-N submatrix of the
radar data cube. Each column vector consists of K fast-time samples for a single pulse
received at a single array element. The N column vectors represent the same pulse
sampled across N array elements. The sampled data in the N column vectors is a spatial
sampling of the incident waveform. Analysis of the data across array elements lets you
determine the spatial frequency content of each received pulse. The Nyquist criterion for
spatial sampling requires that array elements not be separated by more than one-half the
wavelength of the carrier frequency.

In spatial frequency operations, the number of samples in the second dimension of the
data cube can change. The number of spatial frequency bins may not be the same as the
number of sensor elements.

Beamforming is a spatial filtering operation that combines data across the array elements
to selectively enhance and suppress wavefields incident on the array from particular
directions.

3 Radar Data Cube, Units, and Physical Constants

3-4

Space-Time Processing
Space-time adaptive processing operates on the two-dimensional angle-Doppler data for
each range bin. Consider the K-by-N-by-L radar data cube. Each of the K samples is data
from the same range. This range is sampled across N array elements, and L PRIs.
Collapsing the three-dimensional matrix at each range bin into N-by-L submatrices allows
the simultaneous two-dimensional analysis of angle of arrival and Doppler frequency.

Organizing Data in the Radar Data Cube
If you have K complex-valued baseband data samples collected from L pulses received at
N sensors, you can organize your data in a format compatible with the Phased Array
System Toolbox conventions using permute. After processing your data, you can, if you
wish, convert back to your original data cube format with ipermute.

Reordering the Data Cube

Start with a data set consisting of 200 samples per pulse for ten pulses collected at 6
sensor elements. Your data is organized as a 6-by-10-by-200 Matlab™ array. Reorganize
the data into a Phased Array System Toolbox™ compatible data cube.

Simulate this data structure using complex-valued white Gaussian noise samples.

origdata = randn(6,10,200)+1j*randn(6,10,200);

The first dimension of origdata is the number of sensors (spatial sampling), the second
dimension is the number of pulses (slow-time), and the third dimension contains the fast-
time samples. Phased Array System Toolbox™ expects the first dimension to contain the
fast-time samples, the second dimension to represent individual sensors in the array, and
the third dimension to contain the slow-time samples.

To reorganize origdata into a format compatible with the toolbox conventions, enter:

newdata = permute(origdata,[3 1 2]);

The permute function moves the third dimension of origdata into the first dimension of
newdata. The first dimension of origdata becomes the second dimension of newdata
and the second dimension of origdata becomes the third dimension of newdata. This
results in newdata being organized as fast-time samples-by-sensors-by-slow-time
samples. You can now process newdata with Phased Array System Toolbox functions.

 Radar Data Cube

3-5

After you process your data, you can use ipermute to return your data to the original
structure.

data = ipermute(newdata,[3 1 2]);

In this case, data is the same as origdata.

3 Radar Data Cube, Units, and Physical Constants

3-6

Units of Measure and Physical Constants
In this section...
“Units of Measure” on page 3-7
“Physical Constants” on page 3-7

Units of Measure
Phased Array System Toolbox software almost exclusively uses SI base and derived units
to measure physical quantities. The software does not provide any utilities for converting
SI base or derived units to other systems of measurement.

Angles

Angles are an exception to the use of SI base and derived units. All angles in Phased
Array System Toolbox software are specified in degrees. See “Spherical Coordinates” for
an explanation of the angles used in the software. There are two utility functions for
converting angles from radians to degrees and degrees to radians: rad2deg and
deg2rad.

Decibels

To accurately model and simulate phased array systems, it is necessary to account for
gains and losses in power incurred at various stages of processing. In Phased Array
System Toolbox software, these gains and losses are specified in decibels (dB). Signal to
noise ratios (SNRs) and the receiver noise figure are also expressed in dB. A power of P
watts in dB is:

10log10(P)

There are two utility functions for converting between dB and power: db2pow and
pow2db, and two utility functions for converting between magnitude and dB: db2mag and
mag2db.

Physical Constants
Modeling and simulating phased array systems requires that you specify values for a
number of physical constants. For example, the distribution of thermal noise power per
unit bandwidth depends on the Boltzmann constant. To measure Doppler shift and range

 Units of Measure and Physical Constants

3-7

in radar, you have to specify a value for the speed of light. The following table summarizes
the three physical constants specified in the toolbox. See physconst for additional
information.

Description Value
Speed of light in a vacuum 299,792,458 m/s. Most commonly denoted

by c.
Boltzmann constant relating energy to
temperature.

1.38 × 10−23 J/K. Most commonly denoted
by k.

Mean radius of the Earth 6,371,000 m

3 Radar Data Cube, Units, and Physical Constants

3-8

Basic Radar Workflow

• “Overview of Basic Workflow” on page 4-2
• “End-to-End Radar System” on page 4-3

4

Overview of Basic Workflow
The scenario and code examples contained in “End-to-End Radar System” on page 4-3
serve as an introduction to the fundamental workflow used in Phased Array System
Toolbox software. The example is intentionally simplified in order to familiarize you with
the basic theme that extends throughout the toolbox. You will find the core elements of
this workflow in many other examples.

The basic workflow consists of:

• Constructing objects that represent the physical components and algorithms of your
model. The objects have modifiable properties that enable you to parameterize your
model. For information about the object properties, see the object reference page.

• Using the object's step method to perform the action of your parameterized object on
inputs. The action of step is specific to each algorithm. For example, the step
method for the linear FM waveform, phased.LinearFMWaveform, performs a
different action than the step method for the steering vector,
phased.SteeringVector. The specific action and syntax of each step method are
documented on the reference page. You can access the documentation for an object’s
step method by entering:

doc phased.ObjectName/step

at the MATLAB command prompt, or via the hyperlink in the Methods section of the
object’s reference page.

4 Basic Radar Workflow

4-2

End-to-End Radar System
This example shows how to apply the basic toolbox workflow to the following scenario:
Assume you have a single isotropic antenna operating at 4 GHz. Assume the antenna is
located at the origin of your global coordinate system. There is a target with a
nonfluctuating radar cross section of 0.5 square meters initially located at (7000,5000,0).
The target moves with a constant velocity vector of (-15;-10;0). Your antenna transmits
ten rectangular pulses with a duration of 1 μs at a pulse repetition frequency (PRF) of 5
kHz. The pulses propagate to the target, reflect off the target, propagate back to the
antenna, and are collected by the antenna. The antenna operates in a monostatic mode,
receiving only when the transmitter is inactive.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

Waveform Model

To create the waveform, use the phased.RectangularWaveform System object™ and
set the properties to the desired values.

waveform = phased.RectangularWaveform('PulseWidth',1e-6,...
 'PRF',5e3,'OutputFormat','Pulses','NumPulses',1);

See “Rectangular Pulse Waveforms” for more detailed examples on creating waveform.

Antenna Model

To model the antenna, use the phased.IsotropicAntennaElement System object. Set
the operating frequency range of the antenna to (1,10) GHz. The isotropic antenna
radiates equal energy for azimuth angles from -180° to 180° and elevation angles from
-90° to 90°.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[1e9 10e9]);

Target Model

To model the target, use the phased.RadarTarget System object. The target has a
nonfluctuating RCS of 0.5 square meters and the waveform incident on the target has a
carrier frequency of 4 GHz. The waveform reflecting off the target propagates at the
speed of light. Parameterize this information in defining your target.

 End-to-End Radar System

4-3

target = phased.RadarTarget('Model','Nonfluctuating','MeanRCS',0.5,...
 'PropagationSpeed',physconst('LightSpeed'),'OperatingFrequency',4e9);

Antenna and Target Platforms

To model the location and movement of the antenna and target, use the
phased.Platform System object. The antenna is stationary in this scenario and is
located at the origin of the global coordinate system. The target is initially located at
(7000,5000,0) and moves with a constant velocity vector of (-15,-10,0).

antennaplatform = phased.Platform('InitialPosition',[0;0;0],'Velocity',[0;0;0]);
targetplatform = phased.Platform('InitialPosition',[7000; 5000; 0],...
 'Velocity',[-15;-10;0]);

For definitions and conventions regarding coordinate systems, see “Global and Local
Coordinate Systems”.

Use the rangeangle function> to determine the range and angle between the antenna
and the target.

[tgtrng,tgtang] = rangeangle(targetplatform.InitialPosition,...
 antennaplatform.InitialPosition);

See “Motion Modeling in Phased Array Systems” for more details on modeling motion.

Modeling Transmitter

To model the transmitter specifications, use the phased.Transmitter System object. A
key parameter in modeling a transmitter is the peak transmit power. To determine the
peak transmit power, assume that the desired probability of detection is 0.9 and the
maximum tolerable false-alarm probability is 10−6. Assume that the ten rectangular
pulses are noncoherently integrated at the receiver. You can use the albersheim
function to determine the required signal-to-noise ratio (SNR).

Pd = 0.9;
Pfa = 1e-6;
numpulses = 10;
SNR = albersheim(Pd,Pfa,10);

The required SNR is approximately 5 dB. Assume you want to set the peak transmit
power in order to achieve the required SNR for your target at a range of up to 15 km.
Assume that the transmitter has a 20 dB gain. Use the radareqpow function to
determine the required peak transmit power.

4 Basic Radar Workflow

4-4

maxrange = 1.5e4;
lambda = physconst('LightSpeed')/4e9;
tau = waveform.PulseWidth;
Pt = radareqpow(lambda,maxrange,SNR,tau,'RCS',0.5,'Gain',20);

The required peak transmit power is approximately 45 kilowatts. To be conservative, use
a peak power of 50 kilowatts in modeling your transmitter. To maintain a constant phase
in the pulse waveforms, set the CoherentOnTransmit property to true. Because you
are operating the transmitter in a monostatic (transmit-receive) mode, set the
InUseOutputPort property to true to record the transmitter status.

transmitter = phased.Transmitter('PeakPower',50e3,'Gain',20,'LossFactor',0,...
 'InUseOutputPort',true,'CoherentOnTransmit',true);

See “Transmitter” for more examples on modeling transmitters and “Radar Equation” for
examples that use the radar equation.

Modeling Waveform Radiation and Collection

To model waveform radiation from the array, use the phased.Radiator System object.
To model narrowband signal collection at the array, use the phased.Collector System
object. For wideband signal collection, use the phased.WidebandCollector System
object.

In this example, the pulse satisfies the narrowband signal assumption. The carrier
frequency is 4 GHz. For the value of the Sensor property, insert use the handle for the
isotropic antenna. In the phased.Collector System object, set the Wavefront
property to 'Plane' to specify that the incident waveform on the antenna is a plane
wave.

radiator = phased.Radiator('Sensor',antenna,...
 'PropagationSpeed',physconst('LightSpeed'),'OperatingFrequency',4e9);
collector = phased.Collector('Sensor',antenna,...
 'PropagationSpeed',physconst('LightSpeed'),'Wavefront','Plane',...
 'OperatingFrequency',4e9);

Modeling Receiver

To model the receiver, use the phased.ReceiverPreamp System object. In the receiver,
you specify the noise figure and reference temperature, which are key contributors to the
internal noise of your system. In this example, set the noise figure to 2 dB and the
reference temperature to 290 Kelvin. Seed the random number generator to a fixed value
for reproducible results.

 End-to-End Radar System

4-5

receiver = phased.ReceiverPreamp('Gain',20,'NoiseFigure',2,...
 'ReferenceTemperature',290,'SampleRate',1e6,...
 'EnableInputPort',true,'SeedSource','Property','Seed',1e3);

See “Receiver Preamp” for more details.

Modeling Propagation

To model the propagation environment, use the phased.FreeSpace System object. You
can model one-way or two-propagation by setting the TwoWayPropagation property. In
this example, set this property to false to model one-way propagation.

channel = phased.FreeSpace(...
 'PropagationSpeed',physconst('LightSpeed'),...
 'OperatingFrequency',4e9,'TwoWayPropagation',false,...
 'SampleRate',1e6);

See “Free Space Path Loss” for more details.

Implementing the Basic Radar Model

Having parameterized all the necessary components for the scenario, you are ready to
generate the pulses, propagate the pulses to and from the target, and collect the echoes.

The following code prepares for the main simulation loop. Time step between pulses

T = 1/waveform.PRF;
% Get antenna position
txpos = antennaplatform.InitialPosition;
% Allocate array for received echoes
rxsig = zeros(waveform.SampleRate*T,numpulses);

You can execute the main simulation loop with the following code:

for n = 1:numpulses
 % Update the target position
 [tgtpos,tgtvel] = targetplatform(T);
 % Get the range and angle to the target
 [tgtrng,tgtang] = rangeangle(tgtpos,txpos);
 % Generate the pulse
 sig = waveform();
 % Transmit the pulse. Output transmitter status
 [sig,txstatus] = transmitter(sig);
 % Radiate the pulse toward the target
 sig = radiator(sig,tgtang);

4 Basic Radar Workflow

4-6

 % Propagate the pulse to the target in free space
 sig = channel(sig,txpos,tgtpos,[0;0;0],tgtvel);
 % Reflect the pulse off the target
 sig = target(sig);
 % Propagate the echo to the antenna in free space
 sig = channel(sig,tgtpos,txpos,tgtvel,[0;0;0]);
 % Collect the echo from the incident angle at the antenna
 sig = collector(sig,tgtang);
 % Receive the echo at the antenna when not transmitting
 rxsig(:,n) = receiver(sig,~txstatus);
end

Noncoherently integrate the received echoes, create a vector of range gates, and plot the
result. The red vertical line on the plot marks the range of the target.

rxsig = pulsint(rxsig,'noncoherent');
t = unigrid(0,1/receiver.SampleRate,T,'[)');
rangegates = (physconst('LightSpeed')*t)/2;
plot(rangegates/1e3,rxsig)
hold on
xlabel('range (km)')
ylabel('Power');
ylim = get(gca,'YLim');
plot([tgtrng/1e3,tgtrng/1e3],[0 ylim(2)],'r')
hold off

 End-to-End Radar System

4-7

4 Basic Radar Workflow

4-8

